UNIVERSITE FERHAT ABBAS

SETIF le 04/03/2019

Faculté de médecine Département de Médecine

TD ENZYMOLOGIE

1. Les enzymes sont:

A. Des glucides B. Des lipides C. Des protéines D. Des acides nucléiques

2. Sur une enzyme, le site de fixation du substrat:

- A. Prend une grande proportion de l'enzyme.
- B. Représente une petite zone de l'enzyme.
- C. Est formé par des acides aminés éloignés sur la structure primaire de l'enzyme.

3. Le site de fixation du substrat est responsable:

- A. de la masse de l'enzyme.
- B. de la capacité de catalyse de l'enzyme
- C. de la spécificité de l'enzyme

4. La spécificité des enzymes permet aux enzymes:

- A. De différencier des énantiomères
- B. De catalyser plusieurs types de réaction
- C. De produire différents produits sur un même substrat

5. Une enzyme qui a une spécificité large:

- A. produit différents produits à partir d'un même substrat
- B. reconnaît de nombreux substrats.
- C. catalyse différents type de réactions chimiques.

6. Les acides aminés qui ne composent pas les sites catalytiques et de liaison sont:

- A. Impliqués dans une partie de la catalyse.
- B. Sont responsable de la bonne conformation des sites de l'enzyme.
- C. Inutiles.

7. 7. Le site de fixation:

- A. A. Contient des acides aminés capables de reconnaître le substrat.
- B. B. Copie la forme du substrat pour le reconnaître.
- C. C. Est complémentaire du substrat.

8. 8. Le site catalytique est:

- A. A. Différent du site de fixation.
- B. B. Capable de reconnaître le substrat pour assurer la catalyse.
- C. C. Regroupe une grande partie des acides aminés de l'enzyme

9. 9. L'ajustement induit indique la capacité des enzymes:

- A. A.Catalyser leur réaction sur de nombreux substrat
- B. B. Réguler leur activité en fonction de la quantité de substrat disponible
- C. C.Modifier leur conformation pour s'adapter au substrat.

1010. Les isozymes sont des enzymes:

- A. A. Identiques mais catalysant des réactions différentes
- B. B. Différentes mais catalysant des réactions identiques
- C. C. Identiques mais situées dans des organes différents

1111. Les pro enzymes sont:

- A. A. Plus efficaces que les autres enzymes
- B. B. Activées seulement par leur dégradation
- C. C. Issues de la dégradation des enzymes

1212. Lespro enzymes sont utiles pour:

- A. A. Protéger les cellules productrices de ces enzymes.
- B. B. Pour obtenir une forte activité en très peu de temps.
- C. C. Toutes les enzymes.

L

1313. La cinétique enzymatique concerne l'étude:

- A. A. De la vitesse de l'association de l'enzyme au substrat
- B. B. De la vitesse de la réaction chimique catalysée
- C. C. Des mécanismes de la catalyse enzymatique

14. Les étapes de la catalyse sont au nombre de:

A. 2 B. 3 C. 4

15. Le facteur limitant d'une réaction enzymatique est:

- A. La constante catalytique (kcat).
- B. La constante de dissociation du complexe Enzyme-substrat.
- C. La constante de dissociation du complexe Enzyme produit.

16. En règle générale, la constante catalytique est:

- A. Bien plus grande que la constante de dissociation du complexe Enzymesubstrat.
- B. Égale à la constante de dissociation du complexe Enzyme-substrat.
- C. Bien plus petite que la constante de dissociation du complexe Enzymesubstrat.

17. Les conditions initiales nécessaires à l'étude cinétique, concerne:

- A. La température du milieu réactionnel.
- B. La concentration de substrat.
- C. La concentration de produit.

18. La vitesse d'une réaction dépend directement:

- A. De la concentration en enzyme
- B. De la concentration en substrat
- C. De la concentration en complexe enzyme-substrat

19. La vitesse initiale d'une réaction dépend:

- A. De la concentration en substrat
- B. De la concentration en enzyme
- C. De la température

20. La vitesse initiale d'une réaction se détermine sur un graphique:

- A. Concentration de produit formé en fonction de la concentration en enzyme
- B. Concentration de produit formé en fonction du temps
- C. Inverse de la vitesse en fonction de l'inverse de la concentration en substrat

21. La vitesse initiale d'une réaction se détermine sur un graphique:

A. A. Grâce à la tangente de la courbe après 2 minutes exactement.

- B. B. Grâce à la tangente de la courbe au temps 0.
- C. C. Grâce à la tangente de la courbe au moment ou la réaction est totale.

2222. La vitesse d'une réaction enzymatique à l'équilibre est:

A. A. Minimum B. Nulle C.Maximum

2323. L'augmentation de la concentration en substrat:

- A. Augmente l'affinité de l'enzyme pour le substrat.
- B. Augmente la vitesse initiale de la réaction.
- C. Diminue la vitesse initiale de la réaction.

2424. L'augmentation de la concentration en substrat ne produit aucun effet sur la vitesse initiale:

- A. Si la concentration est saturante au départ.
- B. Si la concentration en substrat est très faible.
- C. Si la température est différente de la température optimale.

2525. La vitesse initiale est toujours proportionnelle à la concentration en enzyme: A. Vrai B. FJaux

2626. La vitesse initiale est maximale:

- A. Lorsque le pH est acide
- B. Lorsque le pH est neutre
- C. Lorsque le pH est basique

2727. La vitesse maximale est atteinte par une enzyme:

- A. A. Lorsque la température est élevée.
- B. B. Lorsque la concentration en enzyme est élevée
- C. C. Lorsque la concentration en substrat est élevée

2828. L'équation de Michaelis-Menten permet de calculer la vitesse initiale d'une réaction:

- A. A. Si vous connaissez la concentration en enzyme
- B. B. Si vous connaissez la concentration en substrat
- C. C. Si vous connaissez la concentration en enzyme et en substrat

29. La constante de Michaelis-Menten est la concentration en substrat nécessaire à l'enzyme:

A. pour atteindre le dixième de la vitesse maximale.

B. pour atteindre la moitié vitesse maximale.

C. pour atteindre la vitesse maximale.

30. Les constantes enzymatiques (Vmax et KM) sont déterminées expérimentalement:

A. Sur un graphique Vi = f([E])

B. Sur un graphique 1/Vi = f(1/[S])

C. Sur un graphique Vi = f(1/[S])

31. Un inhibiteur compétitif modifie:

A. Le KM. B. Le Vmax. C. Le KM et le Vmax.

32. Un inhibiteur non compétitif modifie:

A. Le KM. B. Le Vmax. C. Le KM et le Vmax.

33. Un inhibiteur compétitif:

A. Se lie sur un site différent du site de reconnaissance de l'enzyme.

B. Se lie au site de reconnaissance de l'enzyme.

C. Possède une structure comparable au substrat.

34. Un inhibiteur non compétitif:

A. Se lie sur un site différent du site de reconnaissance de l'enzyme.

B. Se lie au site de reconnaissance de l'enzyme.

C. Possède une structure comparable au substrat.

<u>Exo 1</u> Les noms des enzymes ont été attribués selon des règles assez précises en fonction des réactions qu'elles catalysent

- 1) Une déshydrogénase catalyse une réaction d'oxydoréduction
- 2) Une hydrolase catalyse une réaction d'hydratation
- 3) Une phosphatase catalyse une réaction de phosphorylation
- 4) Une kinase catalyse une réaction de fixation d'un phosphate
- 5) Une carboxylase catalyse la fixation de CO2
- 6) Les synthétases utilisent l'ATP comme source d'énergie.

Exo 2 Concernant le rôle des enzymes

- 1) Les enzymes sont toujours des protéines. 2) Toutes les enzymes sont des hétéroprotéines.
- **3**) Une enzyme n'agit que sur un seul substrat. **4**) Les enzymes modifient la constante d'équilibre.
- **5**) On peut détruire une enzyme en la chauffant. **6**) Les enzymes agissent mieux vers pH 7.
- 7) Certaines enzymes requièrent la présence d'un ion métallique pour agir.
- 8) Les enzymes augmentent l'énergie d'activation de la réaction.
- 9)Donner la définition du site actif d'une enzyme.

<u>Exo 3</u> Concernant le site actif d'une enzyme: Le site actif (ou centre actif) est :

- 1) riche en acides aminés hydrophiles, 2) situé à la périphérie de la molécule.
- 3) formé d'un très grand nombre d'acides aminés, 4) situé dans une zone hydrophobe,
- 5) constitué d'un ou plusieurs sites de fixation et d'un site catalytique,
- **6**) la "géométrie" du site actif n'a pas d'importance pour les enzymes à spécificité

Exo 4 Concernant la classification des enzymes :

La glycérol kinase catalyse la réaction Glycérol + ATP \rightarrow Glycérol + ADP

La succinyl CoA ligase catalyse la réaction Succinate + HSCoA + GTP \rightarrow Succinyl CoA + GDP + Pi

Glucose 6 P, Fructose 6 P transférase catalyse la réaction G6P → F6P

Exo 5 Concernant le nom usuel de l'enzyme

Une déshydrogénase catalyse la réaction Glycéraldéhyde
3P + NAD +P \rightarrow Glycérate 1,3 P+ NADH,H+

Une Kinase catalyse la réaction AG HSCoA + ATP \rightarrow acyl CoA + AMP+PPI

Une épimérase catalyse la réaction Glucose 6 P \rightarrow Fructose 6 P Une phosphatase catalyse la réaction Glucose 6 P + H2O \rightarrow Glucose + Pi Une décarboxylase catalyse la réaction Oxaloacétate C4 → pyruvate C3 + CO2

Une épimérase catalyse la réaction Glucose 6 P → Mannose 6 P

<u>Exo 6</u> On considère un système enzyme-substrat fonctionnant dans des conditions de quasi équilibre.

Montrer que l'on peut calculer la concentration du complexe enzyme-substrat connaissant la concentration totale en enzyme $[E_T]$, la concentration initiale en substrat [S] et la constante de Michaëlis Km. Application : Calculez les concentrations [ES1] et [ES2] du complexe enzyme-substrat dans les deux cas suivants :

Si
$$[S1] = 10^{-2} M$$
 $[S2] = 10^{-4} M$

Si
$$[ET] = 10^{-8} M$$
 et $Km = 10^{-4} M$.

Exo 7

On suit la catalyse de Glucose -6- phosphate en acide phosphogluconique par l'enzyme Glucose -6-phosphate déshydrogénase, en absence puis en présence de deux différents substrats. Les résultats suivants ont été obtenus :

Glucose -6- phosphate(mM)	Vitesses initiales (UI / ml de l'enzyme)		
	I= 0	Glyceraldehyde-3-P	Ribose-5-P
0,6	22,2	9,7	4,9
1,2	30,8	16,2	9,0
2,4	38,1	24,5	15,2
4,8	43,2	32,9	23,3
9,6	46,4	39,7	31,8

- 1- Déterminer le type d'inhibition pour chaque inhibiteur.
- 2- Déterminer les paramètres Vmax, Km et Kcat.
- 3- Calculer les constantes Ki pour chaque inhibiteur.
- 4- Calculer l'activité moléculaire, sachant que la concentration de l'enzyme 10 μg/ml et son PM=50KDa.
- 5- Quelle est l'inhibiteur le plus efficace ? pourquoi ?

<u>les réponses:</u> 1. C

- 2. B C
- 3. C
- 4. A
- 5. B
- 6. B
- 7. A C
- 8. A
- 9. C
- 10. B
- 11. B
- 12. A B
- 13. B
- 14. A association Enzyme substrat et catalyse
- 15. A
- 16. C
- 17. B C
- 18. C
- 19. A B C
- 20. B
- 21. B
- 22. B
- 23. B
- 24. A
- 25. B car il arrive un moment où les conditions initiales ne sont plus respectées
- 26. Aucune c'est fonction de l'enzyme
- 27. C
- 28. B
- 29. B
- 30. B
- 31. A
- 32. B